Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.932
1.
J Physiol ; 602(10): 2179-2197, 2024 May.
Article En | MEDLINE | ID: mdl-38630836

Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.


Calcineurin , Neurons , Paraventricular Hypothalamic Nucleus , Rats, Sprague-Dawley , Receptors, AMPA , Tacrolimus , Animals , Receptors, AMPA/metabolism , Receptors, AMPA/physiology , Calcineurin/metabolism , Male , Tacrolimus/pharmacology , Rats , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Calcium/metabolism , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects , Calcineurin Inhibitors/pharmacology , Synapses/physiology , Synapses/drug effects , Synapses/metabolism
2.
Arch Biochem Biophys ; 754: 109951, 2024 Apr.
Article En | MEDLINE | ID: mdl-38452968

Glutamate excitotoxicity accompanies numerous brain pathologies, including traumatic brain injury, ischemic stroke, and epilepsy. Disturbances of the ion homeostasis, mitochondria dysfunction, and further cell death are considered the main detrimental consequences of excitotoxicity. It is well known that neurons demonstrate different vulnerability to pathological exposures. In this regard, neurons containing calcium-permeable AMPA receptors (CP-AMPARs) may show higher susceptibility to excitotoxicity due to an additional pathway of Ca2+ influx. Here, we demonstrate that neurons containing CP-AMPARs are characterized by the higher amplitude of the glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and slower restoration of [Ca2+]i level compared to non-CP-AMPA neurons. Moreover, we have found that NASPM, an antagonist of CP-AMPARs, significantly decreases the amplitude of the [Ca2+]i elevation induced by glutamate or selective AMPARs agonist, 5-fluorowillardiine. In contrast, the antagonists of NMDARs or KARs affect insignificantly. We have also described some peculiarities of Na+, K+, and H+ intracellular dynamics in neurons containing CP-AMPARs. In particular, the amplitude of [Na+]i elevation was lower compared to non-CP-AMPA neurons, whereas the amplitude of [K+]i decrease was higher. We have shown the significant inverse correlation between [K+]i and [Ca2+]i and between intracellular pH and [Na+]i in CP-AMPARs-containing and non-CP-AMPA neurons upon glutamate excitotoxicity. Our data indicate that CP-AMPARs-mediated Ca2+ influx and slow removal of Ca2+ from the cytosol may underlie the vulnerability of the CP-AMPARs-containing neurons to glutamate excitotoxicity. Further studies of the mechanisms mediating the disturbances in ion homeostasis are crucial for developing new approaches for protecting these neurons at brain pathologies.


Calcium , Receptors, AMPA , Receptors, AMPA/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Calcium/metabolism , Neurons/metabolism , Glutamic Acid/metabolism , Homeostasis
3.
Nat Commun ; 14(1): 7971, 2023 Dec 02.
Article En | MEDLINE | ID: mdl-38042894

Ketamine produces rapid antidepressant effects at sub-anesthetic dosage through early and sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), however, the exact molecular mechanism still remains unclear. Transmembrane AMPAR regulatory protein-γ8 (TARP-γ8) is identified as one of AMPAR auxiliary subunits, which controls assemblies, surface trafficking and gating of AMPARs. Here, we show that ketamine rescues both depressive-like behaviors and the decreased AMPARs-mediated neurotransmission by recruitment of TARP-γ8 at the postsynaptic sites in the ventral hippocampus of stressed male mice. Furthermore, the rapid antidepressant effects of ketamine are abolished by selective blockade of TARP-γ8-containing AMPAR or uncoupling of TARP-γ8 from PSD-95. Overexpression of TARP-γ8 reverses chronic stress-induced depressive-like behaviors and attenuation of AMPARs-mediated neurotransmission. Conversely, knockdown of TARP-γ8 in excitatory neurons prevents the rapid antidepressant effects of ketamine.


Ketamine , Mice , Animals , Male , Ketamine/pharmacology , Receptors, AMPA/physiology , Neurons/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Antidepressive Agents/pharmacology
4.
J Neurosci ; 43(49): 8317-8335, 2023 12 06.
Article En | MEDLINE | ID: mdl-37884348

Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.


Neuronal Ceroid-Lipofuscinoses , Receptors, AMPA , Humans , Male , Female , Child , Mice , Animals , Receptors, AMPA/physiology , Neuronal Ceroid-Lipofuscinoses/genetics , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Disease Models, Animal , Homeostasis , Lipids , Neuronal Plasticity
5.
J Gen Physiol ; 155(5)2023 05 01.
Article En | MEDLINE | ID: mdl-37010482

In central synapses, spontaneous transmitter release observed in the absence of action potential firing is often considered as a random process lacking time or space specificity. However, when studying miniature glutamatergic currents at cerebellar synapses between parallel fibers and molecular layer interneurons, we found that these currents were sometimes organized in bursts of events occurring at high frequency (about 30 Hz). Bursts displayed homogeneous quantal size amplitudes. Furthermore, in the presence of the desensitization inhibitor cyclothiazide, successive events within a burst displayed quantal amplitude occlusion. Based on these findings, we conclude that bursts originate in individual synapses. Bursts were enhanced by increasing either the external potassium concentration or the external calcium concentration, and they were strongly inhibited when blocking voltage-gated calcium channels by cadmium. Bursts were prevalent in elevated potassium concentration during the formation of the molecular layer but were infrequent later in development. Since postsynaptic AMPA receptors are largely calcium permeant in developing parallel fiber-interneuron synapses, we propose that bursts involve presynaptic calcium transients implicating presynaptic voltage-gated calcium channels, together with postsynaptic calcium transients implicating postsynaptic AMPA receptors. These simultaneous pre- and postsynaptic calcium transients may contribute to the formation and/or stabilization of synaptic connections.


Calcium , Receptors, AMPA , Calcium/metabolism , Receptors, AMPA/physiology , Synapses/metabolism , Cerebellum/physiology , Calcium Channels/physiology , Synaptic Transmission/physiology
6.
Cell Rep Med ; 4(5): 101020, 2023 05 16.
Article En | MEDLINE | ID: mdl-37080205

The excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) contribute to epileptogenesis. Thirty patients with epilepsy and 31 healthy controls are scanned using positron emission tomography with our recently developed radiotracer for AMPARs, [11C]K-2, which measures the density of cell-surface AMPARs. In patients with focal-onset seizures, an increase in AMPAR trafficking augments the amplitude of abnormal gamma activity detected by electroencephalography. In contrast, patients with generalized-onset seizures exhibit a decrease in AMPARs coupled with increased amplitude of abnormal gamma activity. Patients with epilepsy had reduced AMPAR levels compared with healthy controls, and AMPARs are reduced in larger areas of the cortex in patients with generalized-onset seizures compared with those with focal-onset seizures. Thus, epileptic brain function can be regulated by the enhanced trafficking of AMPAR due to Hebbian plasticity with increased simultaneous neuronal firing and compensational downregulation of cell-surface AMPARs by the synaptic scaling.


Epilepsy , Receptors, AMPA , Humans , Receptors, AMPA/physiology , Neurons , Seizures
7.
J Neurochem ; 164(5): 583-597, 2023 03.
Article En | MEDLINE | ID: mdl-36415923

Calcium-permeable AMPA receptors (CP-AMPARs) play a pivotal role in brain functioning in health and disease. They are involved in synaptic plasticity, synaptogenesis, and neuronal circuits development. However, the functions of neurons expressing CP-AMPARs and their role in the modulation of network activity remain elusive since reliable and accurate visualization methods are absent. Here we developed an approach allowing the vital identification of neurons containing CP-AMPARs. The proposed method relies on evaluating Ca2+ influx in neurons during activation of AMPARs in the presence of NMDAR and KAR antagonists, and blockers of voltage-gated Ca2+ channels. Using this method, we studied the properties of CP-AMPARs-containing neurons. We showed that the overwhelming majority of neurons containing CP-AMPARs are GABAergic, and they are distinguished by higher amplitudes of the calcium responses to applications of the agonists. Furthermore, about 30% of CP-AMPARs-containing neurons demonstrate the presence of GluK1-containing KARs. Although CP-AMPARs-containing neurons are characterized by more significant Ca2+ influx during the activation of AMPARs than other neurons, AMPAR-mediated Na+ influx is similar in these two groups. We revealed that neurons containing CP-AMPARs demonstrate weak GABA(A)R-mediated inhibition because of the low percentage of GABAergic synapses on the soma of these cells. However, our data show that weak GABA(A)R-mediated inhibition is inherent to all GABAergic neurons in the culture and cannot be considered a unique feature of CP-AMPARs-containing neurons. We believe that the suggested approach will help to understand the role of CP-AMPARs in the mammalian nervous system in more detail.


Calcium , Receptors, AMPA , Animals , Receptors, AMPA/physiology , Calcium/metabolism , Neurons/metabolism , Synapses/metabolism , gamma-Aminobutyric Acid , Mammals/metabolism
8.
Curr Drug Targets ; 24(3): 212-224, 2023.
Article En | MEDLINE | ID: mdl-36173074

BACKGROUND: Epilepsy is a neurological disease affected by an imbalance of inhibitory and excitatory signaling in the brain. INTRODUCTION: In this disease, the targets are active in pathophysiology and thus can be used as a focus for pharmacological treatment. METHODS: Several studies demonstrated the antiepileptic effect of drugs acting on the following targets: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-gated calcium channel (Cav), Gamma aminobutyric acid transporter type 1 (GAT1), voltage-gated sodium channels (Nav), voltage-gated potassium channel of the Q subfamily (KCNQ) and Gamma aminobutyric acid type A (GABAA) receiver. RESULTS: These studies highlight the importance of molecular docking. CONCLUSION: Quantitative Structure-Activity Relationship (QSAR) and computer aided drug design (CADD) in predicting of possible pharmacological activities of these targets.


Epilepsy , Humans , Molecular Docking Simulation , Epilepsy/drug therapy , Receptors, AMPA/physiology , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , gamma-Aminobutyric Acid/therapeutic use
9.
Ann Biomed Eng ; 50(9): 1116-1133, 2022 Sep.
Article En | MEDLINE | ID: mdl-35652995

The stiffness of brain tissue changes during development and disease. These changes can affect neuronal morphology, specifically dendritic arborization. We previously reported that N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors regulate dendrite number and branching in a manner that is dependent on substrate stiffness. Since mitochondria affect the shape of dendrites, in this study, we determined whether the stiffness of substrates on which rat hippocampal neurons are grown affects mitochondrial characteristics and if glutamate receptors mediate the effects of substrate stiffness. Dendritic mitochondria are small, short, simple, and scarce in neurons cultured on substrates of 0.5 kPa stiffness. In contrast, dendritic mitochondria are large, long, complex, and low in number in neurons grown on substrates of 4 kPa stiffness. Dendritic mitochondria of neurons cultured on glass are high in number and small with complex shapes. Treatment of neurons grown on the stiffer gels or glass with the NMDA and AMPA receptor antagonists, 2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione, respectively, results in mitochondrial characteristics of neurons grown on the softer substrate. These results suggest that glutamate receptors play important roles in regulating both mitochondrial morphology and dendritic arborization in response to substrate stiffness.


N-Methylaspartate , Receptors, N-Methyl-D-Aspartate , Animals , Cells, Cultured , Mitochondria/metabolism , N-Methylaspartate/metabolism , N-Methylaspartate/pharmacology , Neurons/physiology , Rats , Receptors, AMPA/physiology , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
10.
Brain Res ; 1787: 147919, 2022 07 15.
Article En | MEDLINE | ID: mdl-35436447

A technique combining fluorescence imaging with Ca2+ indicators and single-cell laser scanning photostimulation of caged glutamate (LSPS) allowed identification of functional connections between individual neurons in mixed cultures of rat neocortical cells as well as observation of synchronous spontaneous activity among neurons. LSPS performed on large numbers of neurons yielded maps of functional connections between neurons and allowed calculation of neuronal network parameters. LSPS also provided an indirect measure of excitability of neurons targeted for photostimulation. By repeating LSPS sessions with the same neurons, stability of connections and change in the number and strength of connections were also determined. Experiments were conducted in the presence of bicuculline to study in detail the properties of excitatory neurotransmission. The AMPA receptor inhibitor, 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), abolished synchronous neuronal activity but had no effect on connections mapped by LSPS. In contrast, the NMDA receptor inhibitor, 2-Amino-5-phosphono-pentanoic acid (APV), dramatically decreased the number of functional connections between neurons while also affecting synchronous spontaneous activity. Functional connections were also decreased by increasing extracellular Mg2+ concentration. These data demonstrated that LSPS mapping interrogates NMDA receptor-dependent connectivity between neurons in the network. In addition, a GluN2A-specific inhibitor, NVP-AAM077, decreased the number and strength of connections between neurons as well as neuron excitability. Conversely, the GluN2A-specific positive modulator, GNE-0723, increased these same properties. These data showed that LSPS can be used to directly study perturbations in the properties of NMDA receptor-dependent connectivity in neuronal networks. This approach should be applicable in a wide variety of in vitro and in vivo experimental preparations.


N-Methylaspartate , Receptors, N-Methyl-D-Aspartate , 2-Amino-5-phosphonovalerate/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , N-Methylaspartate/pharmacology , Neurons , Rats , Receptors, AMPA/physiology
11.
Neurosci Bull ; 38(8): 916-926, 2022 Aug.
Article En | MEDLINE | ID: mdl-35290589

CaMKII is essential for long-term potentiation (LTP), a process in which synaptic strength is increased following the acquisition of information. Among the four CaMKII isoforms, γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons (LTPE→I). However, the molecular mechanism underlying how γCaMKII mediates LTPE→I remains unclear. Here, we show that γCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10-30 Hz range. Following stimulation, γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95. Knocking down γCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors (AMPARs) in putative inhibitory interneurons, which are restored by overexpression of γCaMKII but not its kinase-dead form. Taken together, these data suggest that γCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons.


N-Methylaspartate , Receptors, AMPA , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Hippocampus/metabolism , Interneurons/physiology , Long-Term Potentiation/physiology , N-Methylaspartate/metabolism , Receptors, AMPA/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology
12.
Eur J Gastroenterol Hepatol ; 34(5): 471-477, 2022 05 01.
Article En | MEDLINE | ID: mdl-35352689

N-methyl-d-aspartate receptors (NMDARs) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are excitatory neurotransmission receptors of the central nervous system and play vital roles in synaptic plasticity. Although not fully elucidated, visceral hypersensitivity is one of the most well-characterized pathophysiologic abnormalities of functional gastrointestinal diseases and appears to be associated with increased synaptic plasticity. In this study, we review the updated findings on the physiology of NMDARs and AMPARs and their relation to visceral hypersensitivity, which propose directions for future research in this field with evolving importance.


N-Methylaspartate , Receptors, AMPA , Humans , Neuronal Plasticity , Receptors, AMPA/physiology , Receptors, N-Methyl-D-Aspartate/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
13.
Neuroreport ; 33(4): 199-203, 2022 03 02.
Article En | MEDLINE | ID: mdl-35143451

OBJECTIVE: Numerous studies suggest that the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type (AMPA) receptor appears to play a central role in mediating brain functions, such as learning and memory. Trafficking of this receptor is related to different long-term memory processes. This study explores the role of two AMPA receptor (AMPAR) modulators in object recognition memory (ORM) reconsolidation. METHODS: First, the effects of immediate administration of each drug after memory reactivation were investigated and compared. Then, this drug's efficient time window and its effects without memory reactivation were investigated. RESULTS: Immediate CX546 administration after reactivation did not affect ORM reconsolidation. In contrast, administration of 10-mg/kg NBQX significantly impaired ORM reconsolidation within a 6-h time window. Importantly, the observed effects were not attributed to the exploratory behavior or locomotor activity of mice. CONCLUSION: These findings provide new evidence that the AMPA receptor plays an important role in the reconsolidation phase of ORM.


Memory Consolidation , Memory, Long-Term , Receptors, AMPA , Recognition, Psychology , Animals , Dioxoles/pharmacology , Learning , Mice , Piperidines/pharmacology , Quinoxalines/pharmacology , Receptors, AMPA/physiology
14.
Cereb Cortex ; 32(17): 3669-3689, 2022 08 22.
Article En | MEDLINE | ID: mdl-35059716

Fast synaptic communication uses diffusible transmitters whose spread is limited by uptake mechanisms. However, on the submicron-scale, the distance between two synapses, the extent of glutamate spread has so far remained difficult to measure. Here, we show that quantal glutamate release from individual hippocampal synapses activates extracellular iGluSnFr molecules at a distance of >1.5 µm. 2P-glutamate uncaging near spines further showed that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-Rs and N-methyl-D-aspartate (NMDA)-Rs respond to distant uncaging spots at approximately 800 and 2000 nm, respectively, when releasing the amount of glutamate contained in approximately five synaptic vesicles. The uncaging-induced remote activation of AMPA-Rs was facilitated by blocking glutamate transporters but only modestly decreased by elevating the recording temperature. When mimicking release from neighboring synapses by three simultaneous uncaging spots in the microenvironment of a spine, AMPA-R-mediated responses increased supra-additively. Interfering with extracellular glutamate diffusion through a glutamate scavenger system weakly reduced field synaptic responses but not the quantal amplitude. Together, our data suggest that the neuropil is more permissive to short-range spread of transmitter than suggested by theory, that multivesicular release could regularly coactivate nearest neighbor synapses and that on this scale glutamate buffering by transporters primarily limits the spread of transmitter and allows for cooperative glutamate signaling in extracellular microdomains.


Glutamic Acid , Receptors, AMPA , Glutamic Acid/pharmacology , Hippocampus/physiology , Neuropil/metabolism , Receptors, AMPA/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
15.
Neuroscience ; 497: 97-106, 2022 08 10.
Article En | MEDLINE | ID: mdl-34968669

Fear memories allow animals to recognize and adequately respond to dangerous situations. The prelimbic cortex (PrL) is a crucial node in the circuitry that encodes contextual fear memory, and its activity is central for fear memory expression over time. However, while PrL has been implicated in contextual fear memory storage, the molecular mechanisms underlying its maintenance remain unclear. Protein kinase M zeta (PKMζ) is a persistently active enzyme which has been shown to maintain many forms of memories by inhibiting the endocytosis of GluA2-containing AMPA receptors. Therefore, we hypothesized that PKMζ action upon GluA2-containing AMPARs could be a mechanism for contextual fear memory maintenance in the PrL. To test this hypothesis, we trained rats in a contextual fear conditioning (CFC) paradigm and administered intra-PrL infusions of the PKMζ inhibitor ZIP, the GluA2-dependent endocytosis inhibitor GluA23Y or the inactive peptide GluA23Y(s), either two or twenty days after conditioning, and assessed long-term memory retention twenty-four hours later. We found that acute inhibition of GluA2-dependent AMPAR endocytosis in the PrL does not affect recent or remote contextual fear memory maintenance. Also, PKMζ inhibition in the PrL does not impair the maintenance of recent contextual fear memory. However, we found that inhibition of prelimbic PKMζ at a remote time point disrupts contextual fear memory maintenance, and that blocking GluA2-dependent removal of AMPARs prevents this impairment. Our results confirm the central role of PrL in fear memory and identify PKMζ-induced inhibition of GluA2-containing AMPAR endocytosis as a key mechanism governing remote contextual fear memory maintenance.


Fear , Memory, Long-Term , Memory , Protein Kinase C , Receptors, AMPA , Animals , Endocytosis/physiology , Fear/physiology , Hippocampus/physiology , Memory/physiology , Memory, Long-Term/physiology , Protein Kinase C/physiology , Rats , Receptors, AMPA/physiology
16.
PLoS Comput Biol ; 17(11): e1009199, 2021 11.
Article En | MEDLINE | ID: mdl-34767548

GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs. These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr.


GABAergic Neurons/physiology , Models, Neurological , Action Potentials/physiology , Animals , Animals, Newborn , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/physiology , Computational Biology , Computer Simulation , Dendrites/physiology , Mice , Mice, Inbred C57BL , Neural Inhibition/physiology , Patch-Clamp Techniques , Pyramidal Cells/physiology , Receptors, AMPA/physiology , Receptors, Glutamate/physiology , Spatio-Temporal Analysis , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/physiology
17.
Biochem Biophys Res Commun ; 584: 39-45, 2021 12 20.
Article En | MEDLINE | ID: mdl-34768080

The lateral amygdala (LA) is a main sensory input site from the cortical and thalamic regions. In turn, LA glutamatergic pyramidal neurons strongly project to the basal amygdala (BA). Although it is well known that auditory fear conditioning involves synaptic potentiation in the LA, it is not clear whether the LA-BA synaptic transmission is modified upon auditory fear conditioning. Here we found that high-frequency stimulation ex vivo resulted in long-term potentiation (LTP) with a concomitant enhancement of neurotransmitter release at LA-BA synapses. Auditory fear conditioning also led to the presynaptic facilitation at LA-BA synapses. Meanwhile, AMPA/NMDA current ratio was not changed upon fear conditioning, excluding the involvement of postsynaptic mechanism. Notably, fear conditioning occluded electrically induced ex vivo LTP in the LA-BA pathway, indicating that the conditioning and electrically induced LTP share common mechanisms. Our findings suggest that the presynaptic potentiation of LA-BA synapses may be involved in fear conditioning.


Basolateral Nuclear Complex/physiology , Conditioning, Classical/physiology , Fear/physiology , Neurotransmitter Agents/metabolism , Synapses/physiology , Acoustic Stimulation , Amygdala/metabolism , Amygdala/physiology , Animals , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/metabolism , Long-Term Potentiation/physiology , Male , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Receptors, AMPA/physiology , Synapses/metabolism , Synaptic Transmission/physiology
18.
Mol Brain ; 14(1): 140, 2021 09 15.
Article En | MEDLINE | ID: mdl-34526080

Previous studies have demonstrated that brain-derived neurotrophic factor (BDNF) is one of the diffusible messengers for enhancing synaptic transmission in the hippocampus. Less information is available about the possible roles of BDNF in the anterior cingulate cortex (ACC). In the present study, we used 64-electrode array field recording system to investigate the effect of BDNF on ACC excitatory transmission. We found that BDNF enhanced synaptic responses in a dose-dependent manner in the ACC in C57/BL6 mice. The enhancement was long-lasting, and persisted for at least 3 h. In addition to the enhancement, BDNF also recruited inactive synaptic responses in the ACC. Bath application of the tropomyosin receptor kinase B (TrkB) receptor antagonist K252a blocked BDNF-induced enhancement. L-type voltage-gated calcium channels (L-VGCC), metabotropic glutamate receptors (mGluRs), but not NMDA receptors were required for BDNF-produced enhancement. Moreover, calcium-stimulated adenylyl cyclase subtype 1 (AC1) but not AC8 was essential for the enhancement. A selective AC1 inhibitor NB001 completely blocked the enhancement. Furthermore, BDNF-produced enhancement occluded theta burst stimulation (TBS) induced long-term potentiation (LTP), suggesting that they may share similar signaling mechanisms. Finally, the expression of BDNF-induced enhancement depends on postsynaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) and protein kinase Mζ (PKMζ). Our results demonstrate that cortical BDNF may contribute to synaptic potentiation in the ACC.


Brain-Derived Neurotrophic Factor/pharmacology , Gyrus Cinguli/drug effects , Long-Term Potentiation/drug effects , Synapses/drug effects , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Adenylyl Cyclases/physiology , Animals , Calcium Channels, L-Type/physiology , Carbazoles/pharmacology , Dose-Response Relationship, Drug , Electrodes, Implanted , Indole Alkaloids/pharmacology , Long-Term Potentiation/physiology , Male , Mice , Mice, Inbred C57BL , Protein Kinase C/physiology , Receptors, AMPA/physiology , Receptors, Metabotropic Glutamate/physiology , Synapses/physiology , Theta Rhythm/drug effects
19.
Neuropharmacology ; 198: 108781, 2021 10 15.
Article En | MEDLINE | ID: mdl-34480912

The functional properties of AMPA receptors shape many of the essential features of excitatory synaptic signalling in the brain, including high-fidelity point-to-point transmission and long-term plasticity. Understanding the behaviour and regulation of single AMPAR channels is fundamental in unravelling how central synapses carry, process and store information. There is now an abundance of data on the importance of alternative splicing, RNA editing, and phosphorylation of AMPAR subunits in determining central synaptic diversity. Furthermore, auxiliary subunits have emerged as pivotal players that regulate AMPAR channel properties and add further diversity. Single-channel studies have helped reveal a fascinating picture of the unique behaviour of AMPAR channels - their concentration-dependent single-channel conductance, the basis of their multiple-conductance states, and the influence of auxiliary proteins in controlling many of their gating and conductance properties. Here we summarize basic hallmarks of AMPAR single-channels, in relation to function, diversity and plasticity. We also present data that reveal an unexpected feature of AMPAR sublevel behaviour. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.


Ion Channels/physiology , Neuronal Plasticity/physiology , Receptors, AMPA/physiology , Animals , Humans , Synaptic Transmission
20.
Neuropharmacology ; 197: 108708, 2021 10 01.
Article En | MEDLINE | ID: mdl-34274350

Synaptic transmission is one of the fundamental processes that all brain functions are based on. Changes in the strength of synaptic transmission among neurons are crucial for information processing in the central nervous system. The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of ionotropic glutamate receptors (AMPARs) mediate the majority of the fast excitatory synaptic transmission in the mammalian brain. Rapid trafficking of AMPARs in and out of the postsynaptic membrane is proposed to be a major mechanism for synaptic plasticity, and learning and memory. Defects in the regulated AMPAR trafficking have been shown to be involved in the pathogenesis of certain psychiatric and neurodegenerative diseases. Studies accumulated in the past 30 years have provided a detailed molecular insight on how the trafficking of AMPARs is modulated in a subunit-specific manner. In particular, emerging evidence supports that the regulated expression and trafficking of Ca2+-permeable, GluA1-homomeric subtype of AMPARs mediates diverse types of synaptic plasticity, thereby playing critical roles in brain function and dysfunction. In this review, we will discuss the current knowledge of AMPAR subunit-specific trafficking, with a particular emphasis on the involvement of GluA1-homomeric receptor trafficking in synaptic plasticity and brain disorders. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.


Nervous System Diseases/physiopathology , Neuronal Plasticity/physiology , Receptors, AMPA/physiology , Animals , Humans , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Neuronal Plasticity/genetics , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, Ionotropic Glutamate/metabolism , Synaptic Transmission
...